

Al-Azhar University Journal for Medical and Virus Research and Studies

Effect of Pan Retinal Photocoagulation on Macular Vasculature using Optical Coherence Tomography Angiography

Doaa Ali Mahmoud¹ and Rehab Moustafa Kamel¹

¹Department of Ophthalmology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.

*E-mail: doaamahmoud75@gmail.com

Abstract

To evaluate the vascular response of the macular plexus after pan-retinal photocoagulation using OCT A to prove the hypothesis of its ability to improve macular perfusion in addition to clinically proven regression of neovascularization. A prospective interventional non-randomized study included 15 eyes of 12 patients with proliferative diabetic retinopathy (PDR) or severe non-proliferative (NPDR) with macular thickness < 350 who were candidates for PRP. best corrected visual acuity and expressed in (Log MAR) scoring, central macular thickness and superficial and deep vascular density by OCT A were assessed six months following the completion of PRP treatment, the macular vascular density increased after PRP both in the superficial and deep plexus and the change in superficial vascular density only was statically significant p=0.0034) and also There was a significant increase in central macular thickness (p=0.0023), but no significant change in best-corrected visual acuity (p=0.0961). Improved macular perfusion after PRP more in the superficial capillary plexus, the improvement in vision was not significant as the central macular thickness increased after PRP.

Keywords: Diabetic retinopathy, Pan retinal photocoagulation, Central macular thickness, Vascular density, Optical coherence tomography angiography.

1. Introduction

The prevalence of diabetes increases worldwide, so does the number of people with diabetic retinopathy. Approximately 30% of diabetic patients will develop some degree of diabetic retinopathy. Vision loss as a sequence of diabetic retinopathy becomes the main cause in working-age adults [1] Vision loss in DR occurs because retinal ischemia can lead to retinal atrophy, diabetic macular oedema (DME), and neovascularization (NV) with subsequent

vitreous hemorrhage tractional and detachment [2]. Laser PRP aims to modify the natural progress of diabetic retinopathy inducing regression of neovascularization [3]. The DRS established the benefit of pan-retinal photocoagulation (PRP) for proliferative diabetic retinopathy and severe NPDR in type 2 diabetes particularly if close follow is unlikely [4]. The introduction of optical coherence tomography angiography is a

non-invasive novel tool that gives three-dimensional vascular capillary details [5]. Previous studies demonstrated that OCTA is capable of detecting retinal capillary non-perfusion with better resolution than fluorescein angiography [6]. So, studying macular microvasculature changes by OCTA is important in monitoring the response to PRP and monitoring its effect on macular perfusion.

2. Patients and Methods

prospective interventional noncomparative study included 12 diabetic patients (15 eyes) with PDR or severe NPDR with macular oedema < 350 µm who were candidates for PRP. All patients agreed with written informed consent to participate in the study and publish the results before enrollment. The study protocol was approved by the Local Ethics Al-Azhar Committee of University Hospital. The study was held at Al-Zahraa University Hospital. All patients were recruited in the Department Ophthalmology, between September 2020 and September 2022. Inclusion criteria at baseline were severe NPDR or PDR with a macular thickness (CSME) < 350 μm. All study participants gave written informed consent before enrolment. The study was approved by the Ethics Committee of Al-Azhar university.

2.1 Exclusion Criteria

The presence of media opacity as corneal opacity, cataracts, and patients who had cataract surgery or previous laser treatment within the previous 3 months' aphakia, glaucoma, pre-retinal haemorrhage, vitreous haemorrhage and uveitis.

Preoperative evaluation All subjects were subjected to the following: 1- History taking including Name, age, sex, medical history (underlying disease, duration and medications), and history of cataract or glaucoma. Complete ophthalmic examination including Best corrected visual acuity (BCVA) in (Log MAR), IOP measurement (by Goldman applanation

tonometer), Anterior segment examination, Fundus examination (slit lamp biomicroscopy lens and indirect ophthalmoscope). Macular scanning (macular thickness and macular vascular density) using wide-field OCT (RTVue XR Avanti with AngioVue software (Optivue Inc, Fremont, USA)). Macular Thickness Measurement uses a Macular cube (6×6 scan) to measure the central macular thickness (CMT).

2.2 Swept-source OCTA imaging:

Using wide-field OCTA system OCT-A ((RTVue XR Avant Optovue - Angiovue Inc., Fremont, California, USA), 6×6mm raster imaging was performed Vascular density in the superficial capillary plexus (SCP) and deep capillary plexus (DCP) was calculated by the machine software. A minimum signal strength threshold of 6 out of 10 was required for inclusion. The OCT acquisition is done by the same examiner; Images were acquired at baseline and six months after completing PRP session treatment. The whole image density and superior and inferior hemispheres in the superficial and deep capillary plexus are measured.

2.3 Pan-retinal Photocoagulation

Pan-retinal photocoagulation was performed using laser photocoagulation systems with a green laser Laser (GYC-500 Gamagori, NIDEK Aichi443-0038, Photocoagulation JAPAN). was performed, by a retinal specialist, in four sessions, with intervals of 1-2 weeks between each session under Topical anaesthesia, spot size is set at 350 using Mainster wide field and each eye was subjected to 1300–1500 burns, duration and power were adjusted to 0.02 s and 300-500 mW, respectively, and PRP was applied in all 4 peripheral quadrants.

2.4 Statistical Methods

Analysis of data was performed using the software MedCalc v. 20.110. Comparison

between quantitative variables was carried out by One-way analysis of variance (ANOVA) which was used to test the difference between the means of several subgroups of a variable. The P-value results are considered significant when the P-value ≤ 0.05 and non-significant when the P-value > 0.05.

3. Results

As shown in table 1 this study included 12 diabetic patients (15 eyes); 9 eyes with severe NPDR (60%) and 6 eyes with PDR (40 %) who attend the outpatient clinic of ophthalmology at Alzahraa university hospital. The mean age was 58.2±9.01 years (44 – 71), duration of diabetes mean was 14.4±4.3 years (7 – 20). All patients need 3 PRP sessions except 2 patients who need additional sessions as regards BCVA The improvement in BCVA was not

statistically significant (P= 0.0.0961) as it was 0.19 ± 0.08 (Log MAR), increased after treatment by PRP to be 0.17 ± 0.08 (Log MAR) and this can be explained due to increased macular thickness. The mean central macular thickness was $281.13\pm32.88~\mu m$, which increased after treatment to $313.13\pm36.72~\mu m$, this change was statistically significant (P= 0.0023). Central macular thickness increase may denote blood redistribution and increased blood flow to the macula.

As show in fig 1 and 2 macular vascular density, there was an increase in both SCP and DCP density, the increase in SCP density was statistically significant (P= 0.0034) as it was 39.16 ± 4.33 , increased after treatment by PRP to 39.93 ± 3.96 but the increase in DCP density was not statistically significant (P= 0.1181) as it was 40.78 ± 4.94 , increased after treatment by PRP to be 41.82 ± 3.4 .

Table 1: Demographic data of the study group:

Demographic data		Study group (n= 15)	
Age (years)		Mean ± SD	58.2±9.01
		Range	44-71
Duration of DM (years)		Mean ± SD	14.4±4.3
		Range	7-20
Diabetic Retinopathy	NPDR	N (%)	9(60%)
	PDR	N (%)	6 (40%)

NPDR: Non-proliferative diabetic retinopathy, PDR: proliferative diabetic retinopathy.

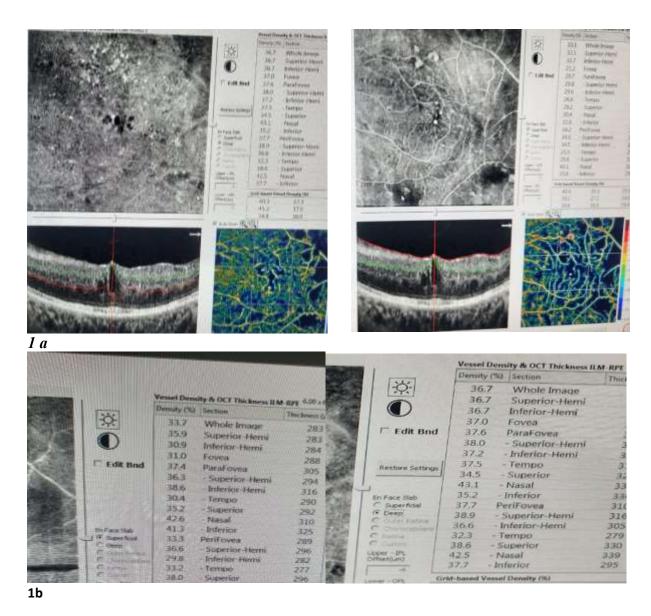


Fig 1: Deep and superficial macular density before treatment (a) and 6 months after PRP(b).

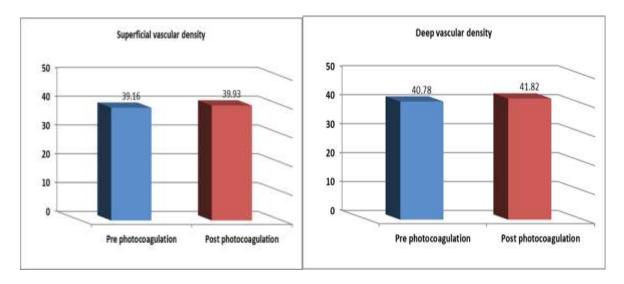


Fig. 2: pre-and post-PRP macular vascular changes

4. Discussion

In our study, we monitor macular vascular density changes following PRP therapy using OCTA, we found that in addition to the peripheral effect of PRP on regression of neovascularization, there is a significant improvement in the vascular density of the macula as a result of redistribution of blood flow from the periphery to the macular region but this is not accompanied by improvement in visual acuity due to increase in macular thickness. SCP density was significantly increased after PRP, while the increase in DCP density was not statically significant the effect of PRP on macular vasculature has been investigated by many researchers, and the result was contradictory.

In agreement with our study, Lee et al. [7] showed that vessel constriction and increased flow velocity in the larger vessels around the optic nerve following treatment and the efficacy of PRP in PDR is thought to be related to improved inner retinal delivery with consequent oxygen decreased angiogenic drive and regression of neovascularization [7]. And also, Fawzi et al. [8]. reported an overall increase in the vascular density of all capillary layers in the macula, 6 months after PRP. And also, Mirshahi et al [9]. reported that macular vascular density increased 3 months after PRP.

On the other hand, in a similar study, Lorusso et al. [10] and Huang et al. [11] investigated the change in OCTA parameters following PRP. Contradictory to our results, they did not observe any vascular density changes or FAZ area changes. This difference can be explained due to the difference in scan size, the operating machine used, or different stages of retinopathy in the study populations.

In conclusion, the current study found that PRP-treated eyes showed Improvement in macular perfusion after PRP, both in the SCP and the DCP and this improvement was statistically significant for the SCP only suggesting effective perfusion of the

posterior pole after PRP. The improvement in vision was not significant as the central macular thickness increased after PRP, a longer follow-up period is mandatory to judge macular oedema.

The study's main limitation is the small study population and the short follow-up period a more patient number and longer duration are needed to monitor the effect of PRP on macular perfusion.

Financial support and sponsorship Nil.

Conflicts of interest

There are no conflicts of interest

References

- Ruta L M, Magliano D J, Lemesurier R, Taylor H R, Zimmet P Z, Shaw J E. Prevalence of diabetic retinopathy in Type 2 diabetes in developing and developed countries. *Diabet Med* 2013;30(4):387–398.
- 2. Diabetic Retinopathy Study (DRS)
 Research Group.
 1978. Photocoagulation treatment of
 proliferative diabetic retinopathy: the
 second report of the Diabetic
 Retinopathy Study
 findings. Ophthalmology 1978; 85:
 82–106
- 3. Budzynski E, Smith J H, Bryar P, et al. Effects of photocoagulation on intraretinal PO2 in cat. Invest Ophthalmol Vis Sci 2008;49(1):380-9.
- 4. The Diabetic Retinopathy Study Research Group: Four risk factors for severe visual loss in diabetic retinopathy. The third report from the Diabetic Retinopathy Study. Arch Ophthalmol 1979; 97:654–655
- 5. Nesper PL, Roberts PK, Onishi AC et al. Quantifying Microvascular Abnormalities with Increasing Severity of Diabetic Retinopathy Using Optical Coherence Tomography Angiography.

Invest Ophthalmol Vis Sci 2017;58(6): BIO307-BIO315.

- 6. Couturier A, Mané V, Bonnin S, et al. Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography. *Retina* 2015; 35: 2384–2391.
- 7. Lee JC, Wong BJ, Tan O, et al. Pilot study of Doppler optical coherence tomography of retinal blood flow following laser photocoagulation in poorly controlled diabetic patients. *Invest Ophthalmol Vis Sci* 2013;54(9):6104–6111.
- 8. Fawzi AA, Fayed AE, Linsenmeier RA, et al. Improved Macular Capillary Flow on Optical Coherence Tomography Angiography After Panretinal Photocoagulation for Proliferative Diabetic Retinopathy. Am J Ophthalmol 2019; 206:217-227.
- 9. Mirshahi A, Ghassemi F, Fadakar K, et al. Effects of panretinal photocoagulation on retinal vasculature and foveal avascular zone in diabetic retinopathy using optical coherence tomography angiography: A pilot study. J Curr Ophthalmol 2019;31(3):287-291.
- Lorusso M, Milano V, Nikolopoulou E, et al. Panretinal Photocoagulation Does Not Change Macular Perfusion in Eyes with Proliferative Diabetic Retinopathy. Ophthalmic Surg Lasers Imaging Retina 2019;50(3):174-178.
- 11. Huang T, Li X, Xie J, Zhang L, Zhang G, Zhang A, Chen X, Cui Y, Meng Q. Long-Term Retinal Neurovascular and Choroidal Changes After Panretinal Photocoagulation in Diabetic Retinopathy. Front Med (Lausanne). 2021 Oct 18; 8:752538.